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Abstract: The existence of an interpolating master action does not guarantee the same

spectrum for the interpolated dual theories. In the specific case of a generalized self-

dual (GSD) model defined as the addition of the Maxwell term to the self-dual model

in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either

nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first

order by means of an auxiliary field we are able to define a master action which interpolates

between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of

opposite helicities. The presence of an auxiliary field explains the doubling of fields in the

dual gauge theory. A generalized duality transformation is defined and both models can be

interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant

correlators of the non-interacting MCS theories from the correlators of the self-dual field

in the GSD model and vice-versa. The derivation of the non-interacting MCS theories

from the GSD model, as presented here, works in the opposite direction of the soldering

approach.
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1. Introduction

The existence of different but equivalent descriptions of the same physical theory can

help us to reveal deep aspects of the theory which are apparent in one formulation but

hidden in the other one. One successful example is the bosonization program in 1 + 1

dimensions [1, 2]. Recent examples are provided by the AdS/CFT correspondence [3] and

the work of [4] where duality played a key role in a rigorous proof of confinement in a four

dimensional theory. A simple approach for deriving dual theories at quantum level is the

use of interpolating master actions [5], see [6] for a review. In [5] a first order master action

was suggested in order to prove duality equivalence between a non-gauge theory of the self-

dual (SD) type [7] (first order) and a second order Maxwell-Chern-Simons (MCS) theory.

Both theories represent one massive polarization state in D = 2 + 1 spacetime of helicity

+1 or −1, depending on the sign of the Chern-Simons coefficient. As expected from the

lack of gauge invariance of the SD theory, the map between the theories fµ ↔ εµνγ∂νAγ

m is

invariant under gauge transformations of the Maxwell-Chern-Simons fundamental field Aγ

and holds at classical and quantum level including gauge invariant correlation functions [8].

The natural addition of a Maxwell term in the self-dual model however, spoils the simplicity

of the duality relation between the now called generalized self-dual (GSD) model and its

possible gauge invariant dual theory. A direct generalization of the master action approach

leads, quite surprisingly, to a gauge theory [9] which now includes a ghost mode in the

spectrum, so the existence of a master action which interpolates between two theories

does not guarantee spectrum equivalence a priori. As explained in [10] if we insist in the

spectrum equivalence a new master action can be suggested which leads however, to a

non-local vector theory. It is seems that we have glanced the old problem of formulating

massive theories in a gauge invariant way. In this work we show that by introducing an

auxiliary vector field to lower the Maxwell term to first order we are able to define another

master action which naturally interpolates between the GSD model and a well defined

gauge invariant local theory which corresponds to a couple of non-interacting Maxwell-

Chern-Simons theories of opposite helicities, henceforth called 2MCS. It turns out that the
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GSD model and the 2MCS models were know to be related for a long time [11, 12]. In

particular, it has been shown in [13, 14] that the two MCS models could be soldered into

the GSD model. Our results are complementary to the soldering procedure and work in

the opposite direction like the canonical transformations of [15, 16]. In the next section

we quickly review previous master action attempts and suggest a new master action and

a generating functional which allows us to compare correlation functions in both theories.

In section III we concentrate on the classical equivalence, clarifying how a theory of two

non-interacting vector fields can be shown to be physically equivalent to the GSD model

which contains only one vector field. We also comment in section III on the coupling to

matter fields. In section IV we draw our conclusions.

2. Master action and quantum equivalence

Let us first present the GSD model which might be called also a Maxwell-Chern-Simons-

Proca model1:

LGSD = a0f
µfµ + a1εαβγfα∂βfγ − a2

2
Fµν(f)Fµν(f) (2.1)

For a2 = 0 we recover the self-dual model of [7]. Due to unitarity reasons we need to

have [17] ( see also [10]) a0 ≥ 0 and a2 ≥ 0. The constants ai are otherwise arbitrary.

Henceforth we assume that a0 and a2 are definite positive. We can write down the equations

of motion of (2.1) in a self-dual form generalizing the definition of duality transformations:

fµ =
1

a0
(a1Eµν − a2¤θµν) f ν ≡ f∗. (2.2)

We have defined the differential operators:

Eµν = εµνγ∂γ , ¤θµν = ¤gµν − ∂µ∂ν (2.3)

Note the useful identities EµνE
να = −¤θα

µ , Eµνθνα = Eα
µ and θαβθβγ = θγ

α. From (2.2) we

can derive the existence of two massive modes in the self-dual field:
(

¤ + m2
+

) (

¤ + m2
−

)

fµ = 0, where

2m2
± = b2 + 2a ±

√

(b2 + 2a)2 − 4a2 , (2.4)

with a = a0/a2 , b = a1/a2. Those massive physical particles can be confirmed by checking

the poles and the corresponding signs of the residues of the propagator. The expression (2.4)

can be inverted for the ratios a, b:

a0 = a2 m+m− ; a1 = a2 (m+ − m−) . (2.5)

There is a sign freedom in the solution for a1 but we choose it to be positive for definiteness.

Henceforth we can describe the GSD model as defined by the three parameters a2,m+,m−

according with (2.1) and (2.5). This is a more physical notation which makes clear, in

1Comparing to [10] we have slightly changed our notation a2 → −a2 but we still use gµν = (+,−,−).
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particular, that the mass split comes from parity breaking. If a1 = 0 we have the Maxwell-

Proca theory with two particles with opposite helicities ±1 but with degenerate mass

m+ = m−.

In order to suggest a new master action which would produce a local gauge theory

dual to (2.1) we recall previous attempts. Both suggestions of [9] and [10] can be cast in

the form of a gauge invariant second order master equation:

L = a0f
µfµ + a1εαβγfα∂βfγ − a2

2
Fµν(f)Fµν(f)

− b1εαβγ(Aα − fα)∂β(Aγ − fγ) +
b2

2
Fµν(A − f)Fµν(A − f) (2.6)

The proposal of [9] corresponds to (b1, b2) = (a1, a2). The advantage of this choice is

that all quadratic terms in the self-dual field except the first one on the right-handed side

of (2.6) are cancelled, which gives rise to a local gauge theory upon integration in the

self-dual field. However, the theory thus obtained contains a ghost pole in the propagator,

which is in agreement with the predictions of [18]. The presence of the ghost could have

been foreseen also from the fact that after a trivial shift Aµ → Aµ + fµ, the theory (2.6)

can be written as a GSD model decoupled from a Maxwell-Chern-Simons Gauge theory

where the coefficient of the Maxwell term appears with the wrong sign. The integration on

the self-dual field reintroduces, as explained in [10], the ghost mode in the resulting gauge

theory. So the message is clear, i.e., we better mix the self-dual and the gauge field through

a Lagrangian density which has no particle content thus guaranteeing the spectrum match

of both gauge and non-gauge theories. This the case of the choice (b1, b2) = (a1, 0) where

the mixing comes only from the topological Chern-Simons term which contains no physical

degree of freedom. Indeed, this choice leads to a gauge theory [10] equivalent to the GSD

model, up to contact terms in the correlation functions, and with the same massive poles

k2 = m2
± without extra particles in the spectrum. Due to the non-cancelation of the

quadratic terms in the self-dual field which involve derivatives, we pay the price of loosing

locality upon integration on the self-dual field. A key ingredient lacking in (2.6) but present

in the original proposal of a master action in [5] is to start with a first order Lagrangian.

It is easy to reduce the Maxwell term to first order by using an auxiliary vector field (gµ),

such that we are led to the following suggestion:

LMaster = a0f
µfµ + a1εαβγfα∂βfγ + gµgµ +

√
a2 gµεµαβFαβ(f) + fµjµ

− a1εαβγ(Ãα − fα)∂β(Ãγ − fγ) −√
a2 (B̃µ − gµ)εµαβFαβ(Ã − f) (2.7)

For a2 = 0 the auxiliary field gµ decouples and we recover the master action of [5] plus a

source term for the self-dual field that we have introduced for future use. After the shifts

Ãµ → Ãµ + fµ and B̃µ → B̃µ + gµ we end up with the GSD model decoupled from a trivial

topological theory for the fields Ãµ and B̃µ with no particle content. If we finally integrate

over Ãµ, B̃µ and gµ in the path integral we derive the GSD model (2.1) plus a source term:

Z(j) =

∫

Df νDgνDÃνDB̃ν ei
R

d3xLMaster =

∫

Df ν ei
R

d3x (LGSD+jµfµ) (2.8)
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On the other hand, since in the master action (2.7) there are no quadratic terms in the fields

fµ and gµ involving derivatives , they can be easily integrated over such that we are left

with a local gauge theory corresponding to a couple of interacting Maxwell-Chern-Simons

models plus source dependent terms:

Z(j) =

∫

Df νDgνDÃνDB̃ν exp i

∫

d3xLMaster

=

∫

DÃνDB̃ν exp i

∫

d3x

[

L̃(Ã, B̃) − jµjµ

4a0
− jµεµνγF νγ(a1Ã +

√
a2B̃)

2a0

]

(2.9)

where

L̃(Ã, B̃) = − 1

2a0
F 2

αβ(a1Ã+
√

a2B̃)−a2

2
F 2

αβ(Ã)−a1εµνγÃµ∂νÃγ−2
√

a2εµνγÃµ∂νB̃γ (2.10)

After appropriate field redefinitions we can rewrite L̃(Ã, B̃) as a couple of non-interacting

Maxwell-Chern-Simons theories. For instance, using

Ãµ =
1

√

2a2(m+ + m−)
(
√

m+Aµ −√
m−Bµ)

(2.11)

B̃µ =
−1

√

2(m+ + m−)

(

√

m3
+Aµ +

√

m3
−Bµ

)

We have

L̃(Ã, B̃) = L2MCS(A,B) = −
F 2

αβ(A)

4
+

m+

2
εµνγAµ∂νAγ −

F 2
αβ(B)

4
− m−

2
εµνγBµ∂νBγ

(2.12)

The field redefinitions (2.11) are not unique but the other possible choices also lead to the

same non-interacting Chern-Simons theories (2.12) up to trivial field rescalings. In terms

of the new fields we can rewrite (2.9), up to a trivial constant Jacobian, as follows:

Z(j) =

∫

DAνDBν exp

{

i

∫

d3x

[

L2MCS(A,B) − jµjµ

4a2 m+m−
+ jµCµ

]}

(2.13)

Where we have defined the gauge invariant combination

Cµ = − 1

2a0
εµνγF νγ(a1Ã +

√
a2B̃) =

εµνγ∂ν

√

a2(m+ + m−)

(

Aγ

√
m+

+
Bγ

√
m−

)

(2.14)

Deriving (2.13) and (2.8) with respect to the sources we have the equivalence of correlation

functions:

〈fµ1
(x1) · · · fµN

(xN )〉GSD = 〈Cµ1
(x1) · · ·CµN

(xN )〉2MCS + contact terms . (2.15)

Where the contact terms (delta functions) come from the quadratic term in the sources

appearing in (2.13). As expected from the fact that the GSD model is not a gauge theory,

we have identified correlation functions of the self-dual field with correlation functions
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of a gauge invariant object in the 2MCS theory with no need of introducing an explicit

gauge condition. By examining the propagators of the fields Aµ and Bµ in the 2MCS

model we notice that that both have a pole at momenta k2 = 0 which represents in fact

a non-propagating mode (vanishing residue [18]) and a physical pole at k2 = m2
+ and

k2 = m2
− respectively. Therefore the spectrum of the 2MCS and the GSD models are

equivalent as expected. However, it is rather disturbing for a complete proof of equivalence

of such models that the correlation functions of the self-dual field can be written in terms

of correlation functions of only one specific linear combination of Aµ and Bµ fields which

are on their turn independent and non-interacting fields and can not be written of course

in terms of just one linear combination. It is natural to ask whether correlation functions

of both fields Aµ, Bµ can be in general calculated from the GSD theory. In order to answer

that question we define a new generating function below which allows the computation of

the relevant gauge invariant correlators of the 2MCS theory:

Z(jA, jB) =

∫

Df νDgνDÃνDB̃ν exp

{

i

∫

d3x
[

LMaster + jµ
AFµ(A) + jµ

BFµ(B)
]

}

(2.16)

=

∫

Df νDgνDÃνDB̃ν exp

{

i

∫

d3x
[

LMaster + r
(

m−j
µ
A − m+j

µ
B

)

Fµ(Ã)

− r√
a2

(

j
µ
A + j

µ
B

)

Fµ(B̃)

]}

(2.17)

Where we have introduced the constant r =
√

2a2/(m+ + m−) , the dual field strength

Fµ(A) = εµνγ∂νAγ and the redefined sources j
µ
A = jµ

A/
√

m+ ; j
µ
B = jµ

B/
√

m−. In obtain-

ing (2.17) from (2.16) we have inverted the linear transformations (2.11). Since the 2MCS

model follows from the master action by integrating over Df νDgν it is clear that jµ
A and

jν
B are the correct sources for computing correlation functions of Fµ(A) and F ν(B) in the

2MCS theory respectively. Now if we integrate over DgνDÃνDB̃ν we deduce:

Z(jA, jB) =

∫

Df νexp i

∫

d3x

[

LGSD−r
(

j
µ
A+j

µ
B

)

¤θµνf
ν− 1

4(m+ + m−)
F 2

αβ

(

j
µ
A + j

µ
B

)

+ r
(

m−j
µ
A − m+j

µ
B

)

εµνγ∂νfγ − 1

2

(

j
µ
A − j

µ
B

)

εµνγ∂ν
(

j
γ
A + j

γ
B

)

]

(2.18)

In conclusion, we can indeed calculate correlation functions of the 2MCS theory from the

GSD model. Explicitly,

〈Fµ1
[A(x1)] · · ·FµN

[A(xN )]Fν1
[B(y1)] · · ·FνN

[B(yM )]〉2MCS

= T̂µ1α1
(m−, x1) · · · T̂µN αN

(m−, xN )T̂ν1β1
(−m+, y1) · · · T̂νMβM

(−m+, yM ) ×
×

〈

fα1(x1) · · · fαN (xN )fβ1(y1) · · · fβM (yM )
〉

GSD
+ contact terms (2.19)

Where T̂αβ(m,x) = −
(

r/
√

|m|
)

(¤θαβ + mEαβ)x. One can check, as we have done, the

correctness of (2.18) and (2.19) by calculating two point functions in the 2MCS theory

from the self-dual propagator in the GSD theory plus the contact terms. In particular, the

contact terms are such that one verifies the trivial result 〈Fµ[A(x)]FνN
[B(y)]〉2MCS = 0.
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The results (2.15) and (2.19) demonstrate the quantum equivalence of the gauge in-

variant sector of the 2MCS model to the GSD model. The equivalence holds up to contact

terms which vanish for non-coinciding points.

3. Classical equivalence and generalized self-duality

From the master action LMaster(f, g, Ã, B̃) given in (2.7) we have the following equations

of motion:

d
(

Ã − f
)

= 0 → Ãµ = fµ + ∂µφ̃ (3.1)

d
(

B̃ − g
)

= 0 → B̃µ = gµ + ∂µψ̃ (3.2)

gµ =
√

a2EµαÃα (3.3)

fµ =
1

a0
Eµν

(

a1Ã
ν +

√
a2B̃

ν
)

, (3.4)

with φ̃, ψ̃ arbitrary functions. The equations (3.1), (3.2) and (3.3) may be used to eliminate

the fields Ãµ, B̃µ and gµ in terms of fµ which becomes the only independent degree of

freedom. In this case (3.4) becomes the generalized self-dual equation fµ = f∗
µ as in (2.2).

On the other hand, we could have used (3.1) and (3.2) to write fµ and gµ in terms of Ãµ

and B̃µ respectively. Accordingly, plugging back the result in (3.3) and (3.4) we derive:

B̃µ =
√

a2EµνÃν + ∂µψ̃ (3.5)

Ãµ = ∂µφ̃ +
1

a0
Eµν

(

a1Ã
ν +

√
a2B̃

ν
)

= ∂µφ̃ + Cµ (3.6)

= ∂µφ̃ +
1

a0
(a1Eµν − a2¤θµν) Ãν = ∂µφ̃ + Ã∗

µ (3.7)

Where the combination Cµ is the same one defined in (2.14). Since the generalized duality

transformation is such that
(

∂µφ̃
)∗

= 0, it is clear from (3.7) that Ã∗
µ =

(

Ã∗
µ

)∗

and using

Ã∗
µ = Cµ we deduce the self-dual equation Cµ = C∗

µ. Therefore, we can say that the map

below holds at quantum and classical level:

fµ ⇔ Cµ (3.8)

In summary, on one hand we have the equations of motion of the first order version of the

GSD model which can be written as gµ =
√

a2Eµαfα and fµ = f∗
µ. On the other hand,

the equation (3.5) teaches us that the combination B̃µ can be eliminated in terms of Ãµ in

parallel to the elimination of gµ as function of the self-dual field, while the dynamical degree

of freedom Ãµ satisfies Ã∗
µ =

(

Ã∗
µ

)∗

which is equivalent to Cµ = C∗
µ and therefore completes

the analogy with the GSD model. So in both theories we have only one independent

dynamical vector field which satisfies a self-duality condition. Thus, we can say that

both theories are generalized versions of the self-dual model of [7]. From the point of

view of the non-interacting MCS fields Aµ and Bµ it is quite surprisingly that there is
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only one independent dynamical vector field. The reader may find useful to obtain the

equations (3.5) and (3.6) directly from the 2MCS theory as we do next in order to clarify

this point. Minimizing L2MCS we have:

Eµν (m−Bν − EναBα) = 0 → Bν =
EναBα

m−
+ ∂νψ (3.9)

Eµν (m+Aν + EναAα) = 0 → Aν = −EναAα

m+
+ ∂νφ (3.10)

The general solutions (3.9) and (3.10) lead to −m
3/2
+ Aν − m

3/2
− Bν = Eνα(

√
m+Aα −

√
m−Bα)− ∂ν

(

m
3/2
+ φ + m

3/2
− ψ

)

which is equivalent to equation (3.5), i.e., B̃ν =
√

a2E
να

Ãα + ∂ν ψ̃ . This confirms that we can treat EναÃα as the only independent dynamical

vector field in the 2MCS model. Analogously, from (3.9) and (3.10) we have
√

m+Aµ −
√

m−Bµ = −Eµα

(

Aα/
√

m+ + Bα/
√

m−

)

+∂µ(
√

m+φ−√
m−ψ) from which we can derive

Ãµ = Eµα
[

Ãα(m+ − m−) + B̃α/
√

a2

]

/(m+m−)+∂µφ̃ which is equivalent to equation (3.6)

and consequently we deduce the generalized self-duality equation Cµ = C∗
µ with Cµ = A∗

µ.

The quantities ψ̃, φ̃ are of course linear combination of ψ and φ.

At last, we briefly comment on the coupling of the GSD model to matter and its dual

gauge theory. We notice that the GSD model is not a gauge theory, so there is no reason

to minimally couple it to U(1) matter. In particular, it is natural, see comments in [19],

to consider a linear coupling of the self-dual field to a U(1) matter current which may

represent fermions or bosons (scalars). By repeating the steps which have taken us from

the GSD to the 2MCS model and substitute jµ by jµ
matter it is easy to verify that we have

the following duality relation when we include matter:

LGSD(f) + Lmatter + fµjµ
matter ⇔ L2MCS(A,B) + Lmatter − jµ

matterjµ matter

4a0

+
jµ
matterεµνγ∂ν

√

a2(m+ + m−)

(

Aγ

√
m+

+
Bγ

√
m−

)

(3.11)

Therefore, the dual gauge theory contains a Thirring-like term plus a non-minimal coupling

of the Pauly-type as in [20, 9]. Only a specific gauge invariant linear combination of the

Chern-Simons fields couples to the matter current. We interpret the appearance of non-

renormalizable interactions in the dual gauge theory as a consequence of the bad ultraviolet

behavior of the self-dual propagator, which becomes a constant for large momenta in spite

of the presence of the Maxwell term.

4. Conclusion

We have suggested here in a systematic way a new master action which correctly interpo-

lates between a generalized self-dual model (GSD) and its dual gauge theory consisting of a

couple of non-interacting Maxwell-Chern-Simons fields of opposite helicities (2MCS) which

is local and ghost free as opposed to previous proposals. The master action suggested here,

by construction, assures that the dual theories have the same spectrum which is not a

– 7 –
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general feature of the master action approach as explained in [10]. Another key ingredient

was the reduction of the second order Maxwell term to first order by means of an auxiliary

vector field gµ besides the dynamical self-dual field fµ. This approach allowed a natural

parallel with the two fields of the 2MCS theories thus, explaining the apparent doubling

of fields on one side of the duality. It turns out that both GSD and 2MCS models have a

superfluous vector field which can be eliminated in favor of a gauge invariant dynamical

vector field whose equation of motion can be written as a generalized self-duality condition.

Furthermore, we have found a map, see (3.8), between the dual theories which holds

at classical and quantum level. In the opposite direction one can also calculate the rel-

evant gauge invariant correlators of the 2MCS theory from the GSD model plus contact

terms. Our work demonstrates a complete equivalence between those models and, differ-

ently from [16], no explicit gauge condition has been fixed.

It is possible (under investigation now) that other soldered theories, see [21] for more ex-

amples, can be similarly “unsoldered” as we have done here. In particular, it is tempting to

investigate by an interpolating master action the doubling of fields in the electric-magnetic

duality invariant Schwarz-Sen model [22] in 3 + 1 dimensions.
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